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ABSTRACT

A class of martingale estimating functions provides a convenient framework for
studying inference for nonlinear time series models. Further, when information
about higher order conditional moments of the observed process is available,
the estimation based on combined estimating functions becomes more
informative. In this paper, a general framework is developed for estimating
parameters of diffusion processes with discretely sampled data using combined
estimating functions. The approach is used to study parameter estimation for
diffusion models for asset pricing including the Black Scholes model, the
Vasicek model, and the Cox-Ingersoll-Ross (CIR) model. Closed form
expressions for the gain in information are also discussed in some detail.
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1. Introduction

For nonlinear time series models, Chandra and Taniguchi [1], Bera et al. [2],
Merkouris [3], Ghahramani and Thavaneswaran [4], and more recently Liang et
al. [5] among others have studied inference using estimating functions. For
discretely sampled diffusion-type models, parameter estimation using
estimating functions has been studied in Bibby and Sgrensen [6], Sgrensen [7],
and Bibby et al. [8]. However, additional assumptions were made and
constraints were imposed to obtain the estimates. Moreover, information issues
related to the estimating function approach have not been sufficiently addressed
in the literature. In this paper, we study combined martingale estimating
functions and show that the combined estimating functions are more informative
when the conditional mean and variance of the observed process depend on the
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same parameter of interest. We then apply our approach to discretely sampled
observations from diffusion models.

This paper is organized as follows. The rest of Section 1 presents the basics
of estimating functions and information associated with estimating functions.
Section 2 presents the general model framework for discretely sampled
observations from a continuous process, and presents the form of the optimal
combined estimating function. In Section 3, the theory is applied to three
different diffusion models that are widely used in asset pricing.

Suppose that {y,,t=1,...,n} is a realization of a discrete-time stochastic

process and its distribution depends on a vector parameter 0 belonging to an
open subset @ of the p -dimensional Euclidean space. Let (€2,F ,F,) denote the

underlying probability space, and let F.” be the o -field generated by
{y,....y,t=1. Let h,=h(y,,...,y,,0),1<t<n be specified q -dimensional

vectors that are martingales. We consider the class M of zero mean and square
integrable p -dimensional martingale estimating functions of the form

M = {gn (0) : gn (9) = iatlht}’

where a, , are pxq matrices depending on y,,...,y, ;,1<t<n. The estimating

functions g, (@) are further assumed to be almost surely differentiable with

og. (0
respect to the components of O , and such that E{g”—e()

Fnyl} and

Elg,(0)g,(0)'|F,] are non-singular for all 8 ® and for each n>1. These
expectations are taken with respect to P,. Estimators of @ can be obtained by
solving estimating equation g.(0)=0 . Furthermore, the pxp matrix
Elg,(0)g,(0)'|F,,] is assumed to be positive definite for all 6 ®. Then in
the class M of all zero mean and square integrable martingale estimating
functions, the optimal estimating function g () which maximizes, in the
partial order of nonnegative definite matrices, the information matrix

_ agn(ﬂ) y | ’ y -1 agn(ﬁ) y
Ign(e)—[E[ 2 FnlD(E[gn(e)gn(enFnl]) H—ae FD
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IS given by

* 0 * 0 ah , ’ _
g.(0)=2 a b = Z(E{—aﬂ‘ Ft_ﬁD (Elhch [F1]) ",
t=1 t=1

and the corresponding optimal information reduces to E[g (0)g (0)'|F ’,]

(Godambe [9]). It follows from Lindsay ([10], page 916) that if we solve an
unbiased estimating equation g.(0) =0 to get an estimator, then the asymptotic

variance of the resulting estimator is the inverse of the information I, . Hence

the estimator obtained from a more informative estimating equation is
asymptotically more efficient.

2. Estimating Function Approach for a Discretely Sampled Continuous
Stochastic Process

Assume that a real-valued continuous-time process {y,} is recorded discretely at
the time points 0,h,2h,---, where h is the discrete interval of observations of
{y.} . Consider the observable discrete-time process {y,,t=0,12,..} with
conditional moments

14.0)=E[ Yy IF s |, (2.1)

ol () =Var(y, |Fy), (2.2)
70) =E| (Yo~ 4(0))’IF Ly, | ,and (23)
K0 =E| (V=4 )" F sy | (2.4)

where F ', is the o -field generated by {y,, -, Y.t >0}. We assume that
the third and fourth moments of y, do not contain any additional parameter. In
order to estimate the parameter @ based on the observations y,,Y,,..., ¥,,, We
consider two classes of martingale differences, viz.,
{m, (0) =y, —(0),t=1....,n} and {M,(8)=m?(0)-0c/(0),t=1...,n} . The
quadratic variations of m, and M, , and the quadratic covariation of m, and
M, are respectively (mb, =E[ny [FJy]=07, (M) =EIM?|F}y]=x 0!,
and(m,M), =E[mM, |F /. 1=7,. Then the optimal estimating function and the
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corresponding information based on these martingale differences m, and M,
are respectively

« L ou, M Loy, oy, 1
0)=—>» L -1.(0)=) —L--L ,and 2.5
En(0) ;ae (m), o) tZlae 00’ (m), (25)
* " 9o M " 9o’ 007 1
0)=-Y Lt ] (0)= S . 2.6
B (0 ==2.Z9 Ty, 1 0= 250 20, (2.6)

For the discretely observed process {y,,}, the following theorem provides
optimality of the combined estimating function based on martingales m, and
M

Theorem 1. For the general model in (2.1)-(2.4), in the class of all combined
estimating . functions of the form

G = {gc (0):g.(0)= i(at—lmt +b M, )}

te

(a) the optimal estimating function is given by g¢ (6) = > (a,,m +b M, ) ,

t=1

where
aflz(l— <m'M>t2J [—a"t 1, dof (mM), ] and 2.7)
(my (M), 00 (my, 90 (m) (M),
b:_lz(l_ (m,M)? j (aut (mM)__dof 1 ]; 28)
(MM, o0 (m) (M), 90 (M),

(b) the information Ig* (0) is given by

L(ﬂ):i(l— (m,M)? jl(%a_yt’ 1 oo aa; 1 _[aﬁaa§+aq2%j (m M), j

ke MMy, ) (0 8 (m), B B (M) |8 B B B )m(M)
(2.9)

Proof. Proof of Theorem 1 is similar to that of Theorem 2.1 in Liang et al.

(2011) and is omitted.

t=1

3. Examples

In the three examples provided in this section, we assume that W, is a Wiener
process.
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3.1. Geometric Brownian Motion with Volatility as a Function of Drift

Consider the Black and Scholes model (Black and Scholes [11]) of the form
dX, =X, dt + o (0) X, dW..

We estimate the unknown parameter & appearing simultaneously in the

conditional mean and variance. The first four conditional moments of

X | X iy are given by

1, (0) = e” X(t—l)h’ O-tz 0)= (eo‘ “n _l)ewh X(Zt—l)h7

7.(0)=(e7@" 1) (e +2) X

(t=Dh>

2 2 2 2 2
K, ) = (e40' @h | 935" (0N | 320" ()N _3)(e0' (@)h _1) 4o Xé—l)h'
Based on the discretely sampled observations X, X, , X,,,--+, X,,,, we consider

two martingale differences m = X, —e"X (t-D)h and
Ry 6h o2 (0)h 26h v/ 2
M, = X§ = 26X, X 1y (67" = 2) € Xy, then

(my, = (eaz(é’)h _1) 20Ny 2

(t-1)h?

2 2 2 2 2
(M), = (ea (0)h _1) R (e40' @h | 93" (O)h | 3520 (O)N _4) X(A';—l)h’

(m,M), = (e"zW)h _1)2 (evzw)h + 2)e36hX3

(t-1)h*
The optimal estimating function based on the martingale difference m, is given
by

) h n X h
gm(g) __ : th _e‘9 ’
(ea (©)h _]_)e‘gh ; Xt

which gives an estimator for & of the form én :ilnlzﬁ.
L=} X(t—l)h

Similarly, the optimal estimating function based on the martingale difference
M, is given by

149



2
ohl[199°(0) 4 |ertom 4
2 00

2 2 2 2 2
(ea (0)h _1) 20 (e20' (Oh | 93" (O)h | 3520 (O)N _4)

n 2
XZ£)(><2—th —2efh Xx_th _ (eaz(e)h _ z)ezeh J

(t-1)h (t-1)h

Oy (0) =-

The corresponding information associated with g (8) and g, (8) are

respectively
2 2
§ ané| (322D sa)eron o
n

and | . (@) = :
i) g 2
M (eaz(ﬂ)h _1) <e402(9)h 4 2% O | 35207 (O)h _4)

1. (0) =

— T 2n
gn e ON _q

Moreover, 1. () > 2n/c*(@) and . (9)—>n(602(0)/69)2/a4(0) as
h—0.

It follows from Theorem 1 that the optimal combined estimating function
based on m, and M, has the form

2 2 2
e4o‘ @)h +2e30' (@)h +3e20' (@)h _4

2 2
a3’ (O)h (ea (&)h +1)

_heaz(e)h (ef&az(é’)h + 2e202(€)h _(50'2 (0) _1Je02(9)h . 2(80'2 (0) +1]J

9c(6) =

Z”: 06 06
X
2 2 2 2
=) o (eo' (0)h _1)(e4a' (Oh | 93 (O)h | 3520 (0)N _4)
2
2 2 oo (0
. heo” (N (e (@)h _( (9) +1JJ
% Xth —€ Xt(h—l) " o0
Xt(hfl) (eo—z(H)h _1)2 @20 (e402(9)h + 26362(9)h + 3e20—2(9)h _4)

2
X2 26" X, X yn —(e" @ _ 2)e29hx 2

(t-1)h
2
Xt(h—l)

X
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3 h
- 2 2 2
20" (O)h+oh (eo— (6)h _1)(ea (6)h +1)

v 3 _ e302(6)h+2e202(9)h_[aaz(e) _1je.92h_2[60'2(‘9)+1] Xih _ et
t=1 00 o0 Xy

(eaz(g)h_(ﬁaz(ﬁ) +1]} 2
00 ( X _ gt Xin _(eaz(ﬁ)h_z)ewh]

(eaz(Q)h _1) ath X 2

—+

(t-1)h X (t-1)h

with information

2
nh?| 57" @h | g4’ @h _ 280'2(9)+3 g3l @n 80'2(9)_'_1 20" (@)h
00 00

2 2 2 2
g3 (@) (ea (0)h —l) (eo (0)h +1)

IgE ©) =

which also approaches n(dc” (9)/69)2 /o*(0) as h—0.

3.2. Ornstein-Uhlenbeck Model

Consider the Ornstein-Uhlenbeck model

dX, = a(u—-X,)dt+cdW,,
which was discussed by Vasicek [12] to describe the movement of short term
interest rates. The unknown parameters of interest are ® = («r, 1, 0>)’ where the
parameter « appears both in the conditional mean and variance. The
conditional distribution of X, |X,,, for a fixed h follows a normal

distribution
N(u(1-e")+e "X oy, 07 (1-67")/ (2a)),
with the first four conditional moments
14(0) = p(1-e")+e "Xy, 07 (0) = 0% (1-e7")/ (2a),

7(8)=0,x,(8) =30 (1-e )"/ (4a?).
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Based on the discretely observed observations X,, X,, X, -, X, , the

martingale differences are derived as
& " X yn — H (1— e ) ,
2
M, =(Xy =€ " Xy —p(1-e")) =0 (1-
while the quadratic variations and covariation are
(M), =c* (1-e*")/(22),(M), =" (1-e*" )2 I (2a?),(m,M), =0

The optimal estimating functions based on the martingale differences m, and

m, = Xth_

e™")/ (20),

M, are respectively given by

2che™ & B By
e & Ko=) Ky ufi-e ")
* 20(1- e_ah n
g.(0)= a((l e—2ah))tz_l:( e—ahx(t_l)h _ﬂ(l_e_ah)) and
0

2che ™" +e2" —1) o o2 (1—e2en

_( o2 (1_e—2ah)2 );[(Xth _eiahx(t—l)h —ﬂ(l—e*"‘h ))2 —%

[ , oi(1—e?n

Moreover, the information matrices associated with g- (0) and g,, (8) are
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2ath’e ™" an:( Xeon ~ '”)2 20he " (1-e™" )Zn:( L~
c

_ t=1 0
o’ (1— e 2" ) o’ (1— e 2" )
2na(1-e")’
Ig:ﬂ 0) = 0 m 0 and
0 0 0
n(205he’2‘”h +g2eh —1)2 n (Zozhe’z"‘h +g2eh —1)
2 O 2 —2ah
2a° (1—e*2““) 200 (l—e * )
L= 0 0 0
—2ah —2ah
n(Zahe +e —l) . n
200° (l— g 2on ) 20"

It follows from Theorem 1 that the optimal combined estimating functions
based on m, and M, for &, xand o have the following forms:

n

. 2ahe™" ,a w
gc(a):#eezah)g(x(t—l)h_lu)(xth_e hx(t_l)h—,u(l—e h))

(Zahe’zah +eh —1) » o? (1— e’Z““)

o (l—e‘zc‘h)2 Z((Xm —&"X —ﬂ(l—e’“h)) _TJ

t=1

n

. 20(1-e™" y B
Jc (1) = _#G—Zah));(xm —¢€ hx(t—l)h —,u(l—e h))

) o v o (l_e—Zah)
gc(g )=-— pu ( 2ah)z[( X(H)h—,u(l—e )) B 20 J

t=1

The above estimating functions are set equal to zero and can be solved
simultaneously to obtain the estimators for «, xand o as
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. 2
X2 X
.1 [Z (t 1)hJ (u (t l)hj

an—ﬁln n .
% |- % ) S %

(2500
(Z (t 1)hJ( Xthj_( X(tl)hj[zx(tl)hxthj
~ =1 t=1 t=1 t=1

>

—

ﬂn - n 2 n n n
(Zx(t -Dh [zx(t 1)hj - (Zx(tl)hxthJJr(z xthj(zx(tl)hj
=1 t=1 t=1 =1
~ 20 C > N )2
Gﬁz#Z(xth_e nhX(t—l)h_:un (1_9 nh)) :

n (l— e—2anh ) —
The corresponding information matrix for 0 = (a, i, %)’ is

2

aa au ac
Ig’g(e) = Iaﬂ e 0 !
IOZO'Z 0 IO'20'2

where

ZahZe_zahthll(Xu—l)h _ﬂ)z n(2ahe?" +e?" —1)2

w“ o’ (i— efzah) 20 (1— g )2
2ahe ™ (1= ") 3 (X yy - 4)
_ -1
Ia,u - 0_2 (l_ e72ah) !
. n(2che " +e " 1) . 2na (1—e"’fh)2 Lo
“ " 2a0f(l-e?") M g(l-e) 7 20"

3.3. Cox-Ingersoll-Ross Model

Consider the CIR model (Cox et al., [13]) of the form
—k(X, —)dt+7,/X, dW,
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which is widely used to model short term interest rates. The unknown
parameters of interest are 0=(k,6,7°) . By using Itd's formula for

X{,u=2,3,4, the first four conditional moments of X | X, are directly

calculated as
1#4,(0)=0-(0— X(t—l)h)e_kh!

2
O-tz (9) = 77_ 0- 2(9 - X(t—l)h)eikh + (0_ 2X(t71)h)ei2kh J
2k

4

7.(0) = %(6’—3(9— X(t_1)h)e"‘h +3(0 - 2X(t_l)h)e—2kh _ (9_3x(t_l)h)e—3kh),

3’ ) ) )
x,(8) :%(0—4(0— X )& ™ +6(0—2X p)e 2 —4(0—-3X )& ™

+(0—4X yp)e ") +357(0).
Based on the discretely observed observations X, X, , X,,,---, X, ,

m, = Xy, _e_khx(t—l)h _‘9(1—9_kh),
M, =Xy~ X yn) —20(L—6™) X, +&7™ (1- *“)(29 ’Ux(t_m
2
+9(9—%)(l—e‘k“)2,
and

(my, = %(9— 20— Xy )e " + (02X ) ™),

(M), = O—4(0— X yyn)e " +6(0—2X _y)eH" —4(0-3X _yy)e "

3n° (
+(9—4x con)e M)+ 207 (),

4
(m M) = kz( ~3(0— X () " +3(0—2X yy ) " = (03X, )e ).

Now the optimal estimating function based on the martingale difference m,
is given by
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_ 2hke” kh

(-

X ) (Xa

_ —khx(t o _e(l_e—kh ))

nztz

—2(0— X yn)e "+ (02X )e

—kh —kh —kh
o () C2k(1-e )Z X =€ Xy —O(1-6™")
i 7 E 0200 X y)e " + (02X )e
0
with associated information matrix
i 1z 0
S ou, ou, 1
L., =>U0,0)=>-"t"0 — =10 13 0],
a0 U025 U
where
i 2kh%e " Q& ((9—X(H)h)2
11 — _ )
Ho-20- Xpn)e “ +(0-2X yyn)e A0
—kh —kh
_ 2khe (1-e )Zn: 0— X oy
12 _ . l
n’° S 0-2(0— X y)e " +(0-2X Ly )e 2
2
Im_Zk(l—e*k“) Z": 1
’ 7 G 0-20-Xp)e " +(0-2X y)e

The optimal estimating function based on the martingale difference M, is given
by

oo (0+2(1-hk)(O— X (_yp)e ™" = (L= 2hK)(@ - 2X (yy, )& )((Xm —e™" Xy, 01— ))2 _o? (9))
2 M,
gy (0)= (l eikh) Xn:( th eikhx(t—l)h _‘9(1—6%))2 -c2(0)
(M),
1 (9— 20— X(t_l)h)e‘kh +(0—2X (yyp)e " )(( X =€ Xy — 9(1_ ek ))2 ot (0))
AT (M),

and the associated information is
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M M M
| I, |

. "ol 0ot 1 !
I* — V 9 — t t — Im Im IM ,
(0 ; () tz=1: o0 90" (M), |lhj |iﬂz |ZJ

0+ 2(1—hk)(0 — Xy, )e ™" = (L—2hk)(0 - 2X , 1)h)e-Zk“)

g =Zk4tz_1:(

(M),
Ilhg _ 774 1-e™ ) Z“:9+2(1 hk)(0 — X(t_l)h)e—kh (1-2hk)(6 - ZX(I 1)h)e_2kh’
M),
M 7t & (9+2(1—hk)(6?—X(H)h)e—kh — (1= 2hK)(0 - 22Xy )e ")
13 4k3 — <M>t

x(0-2(0- Xy )e ™ +(0-2X  y)e ™)),

M r(-e") & 1

* & Gy,
w7 (1 e"‘h) ane—z(e—x(t_l)h)e-k“+(.9—2x(t_1)h)e-2k“
23 - <M>t

_ o2
IS,\g _Z”: 1 (G_Z(G_X(tfl)h)e @ +(9_2X(t—1)h)e Zkh) .
o 4k° (M),

Based on m, and M,, the optimal combined estimating function is given by

g:(0) = Z(a:—lmt +b M, )’
=)

where
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. m,M)? '
T _<<m>t<M>>J

h(@—Xyn)e™ 77 (0+20—hKk)(O— X yy)e ™ = (1—2hK)(O—2X 4y )e " )(m, M),

o my, 2k3(m) (M),

1-g™ nz(l—e’k“)2<m,M>t
" T, 2k(my (M),
(0-2(0— X (yn)e ™ +(0-2X yy )e ™" J(m, M),
2k{m) (M),

and

brlz(l_ <m’M>12 j
(m) (M),

h(@— X (pyn)e (M, M), . n’ (9 +2(1-hk)(0 — X _yyp)e ™" — (1—2hk)(6 - 2X(t_1)h)e‘2kh)

(MM, 2k* (M),
2
3 1-e*(mM),  7°(1-¢")
(M) (M), 2k{M ),
) (0-2(0-X ()™ +(0-2X y)e™")
2k(M),
Further let W, (0) be
W, W, W,
2 2 11 12 13
VVt(G)Z Ot (0) 0o, (’9)+ao-t () aﬂt(’ﬂ) =lw, w, wy,l,
0 00 0 00

W, W. W,

13 23 33
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W, = —T(G— X(t—l)h)(9+ 2(1—hk)(O— X _yn)e™ — (A~ 2hK)(O— 2y, )e ™" )’
21 —kh R
n°he (1—e )
W, = K = X(t_l)h)
2 —kh
n°(l-e ) _
_%(6+2(1— hk)(0— X ;_yyn)e h_ (- 2hk)(0—2X .y )e 2kh)’
h —kh . kh
Yo = (0 X 1’“)( =2(0= X gyn)e " +(0=2X yp)e” )
h(1-e*) L et
" =¥(9_ X Wos ==~ 2k ( —2(0-X, l)h)e_kh +(0-2X,, 1)h)e_2kh) s =0.

Then, the information matrix associated with the optimal combined estimating
function is

. (M, M); (m,M),
U,(0)+V,(0)-W,(0) ——————— |.
gc(e) ;( < ><M>J [ t( )+ t() t( )<m>t<M>tj

4. Conclusions

In this paper, the combined estimating function approach described in Liang et
al. [5] is applied to study estimation for discretely sampled diffusion models
which are widely used in finance. Specifically, estimation details based on the
combined estimation functions are provided for the Black Scholes model under
a geometric Brownian motion, the Ornstein-Uhlenbeck model, and the Cox-
Ingersoll-Ross model, which are commonly used in finance. Information
associated with the combined estimating function is also discussed in detail for
each case.

References:

1. Chandra, S. A. and Taniguchi, M. (2001). Estimating functions for nonlinear
time series models. Annals of the Institute of Statistical Mathematics, 53,
125 - 141.

2. Bera, A. K., Bilias, Y. and Simlai, P. (2006). Estimating functions and
equations: an essay on historical developments with applications to

159



10.

11.

12.

13.

14.

economics. In Palgrave Handbook of Econometrics, T. C. Mills and K.
Patterson, eds., Palgrave Macmillan: London, Vol I, 427 - 476.

Merkouris, T. (2007). Transform martingale estimating functions. The
Annals of Statistics, 35, 1975 - 2000.

Ghahramani, M. and Thavaneswaran, A. (2009). Combining estimating
functions for volatility. Journal of Statistical Planning and Inference, 139,
1449 - 1461.

Liang, Y., Thavaneswaran, A. and Abraham, B. Joint estimation using
quadratic estimating functions. Journal of Probability and Statistics,
Volume 2011 (2011), Article ID 372512, 14 pages.

Bibby, B. M. and Sgrensen, M. (1995). Martingale estimation functions for
discretely observed diffusion processes. Bernoulli, 1, 17-39.

Sgrensen, M. (2009). Parametric inference for discretely sampled stochastic
differential equations. In Handbook of Financial Time Series. T. G.
Andersen, R. A. Davis, and J. P. Kreis, eds., Springer: Heidelberg, 531-553.
Bibby, B. M., Jacobsen, M. and Sgrensen, M. (2010). Estimating functions
for discretely sampled diffusion-type models. In Handbook of Financial
Economics. Y. Ait-Sahalia and L. P. Hansen, eds., Amsterdam: North
Holland, 203-268.

Godambe, V. P. (1985). The foundations of finite sample estimation in
stochastic processes. Biometrika, 72, 319 - 328.

Lindsay, B. G. (1985). Using empirical Bayes inference for increased
efficiency. Annals of Statistics, 13, 914-931.

Black, F. and Scholes, M. (1973). The pricing of options and corporate
liabilities. Journal of Political Economy, 81 (3), 637-654.

Vasicek, O. (1977). An equilibrium characterization of the term structure.
Journal of Financial Economics, 5 (2), 177-188.

Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A theory of the term
structure of interest rates. Econometrica, 53 (2), 385-407.

Thavaneswaran, A. and Abraham, B. (1988). Estimation of nonlinear time
series models using estimating functions. Journal of Time Series Analysis, 9,
99 - 108.

160



