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ABSTRACT 

In launching an environmental technique, statistics plays an important role. The art 

of using statistical methods, models and principles to work on environmental issues 

is hereby utilized in dealing with a well-ordered set of quantities on exposures of 

some Artisans to toxicity. The Poisson was initially assumed to be the intrinsic 

distribution, but following a strong advocacy in favour of the Lindley over members 

of the exponential family of distributions, the population, (𝑋1, . . . , 𝑋𝑛), of hazardous

elements, in the blood/urine of Artisans is assumed to be Lindley. The derivation of 

other "locational" distributions therefore originates from it. Numerical illustrations 

of how the proposed technique can be utilized concludes this work. 

Key Words: Environmental and Ordered Statistics, Lindley Distribution, Exposure, 

Quantiles, Toxicity and R. 

1. Introduction

Environmental issues such as Pollution manifest in many guises, two of which are; 

Accidental and Occupational (Dawodu et al., 2011; Eisenbud and Gesell, 1997). 

With respect to the latter, bad working conditions with occupational hazards and air 

pollution are of common occurrence in popular industrial areas. A division of 

occupational health providers need to be sited at major industrial centers in the 

country. Such a division is to study occupational health hazards and develop 

effective preventive and control measures. This work purports to; suggest a 

technique for monitoring and quantifying toxicity attributable to the type of work an 

Artisan does, identify the distribution of accumulated impurities found in the 

blood/urine of specific voluntary Artisans, by assuming that the initial intrinsic 

distribution of the impurities is Lindley and compute quantiles as future apparent 
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susceptibility to toxicity of specified Artisans. The rest of this work is planned as 

follows; section 2 is captioned "Identification of order statistical measures 

obtainable on toxicity", section 3 is "On the theory of order statistics", four is on 

"Derivation of the 𝑟𝑡ℎ ordered observation’s distribution, five is on "Computation 

of Quantiles", six is on "Numerical Illustrations", seven is on "Discussion and 

Conclusion" while eight is on the “Preference of this Order Statistics Technique 

over Existing Standard Methods” which is finally followed by References. 

2 Identification of order statistics measures obtainable on toxicity 

It is customary that a researcher studies the data he/she collected from a research 

immensely before he can decide on the most appropriate analysis for it. His study 

will usually include checking for; size of the data (say n), the presence of extreme 

values or outliers, minimum and maximum points, an intrinsic distribution whose 

simulated values could be similar to the data under consideration. Between the 

maximum, 𝑋(𝑛) and minimum, 𝑋(0) are ordered values (i.e. Statistics or Quantiles, 

such as, Percentiles, Deciles, Quartiles. The sorting of data to obtain a result that is 

described here, initiates the popular order statistics). 

2.1 On the theory of order statistics 

The ordering, of our continuously distributed population or data, often results in, 

𝑋(0) ≤ 𝑋(1) ≤ ⋯ ≤ 𝑋(𝑟) ≤ ⋯ ≤ 𝑋(𝑛−1) ≤ 𝑋(𝑛). 

The ordered partitions, [𝑋(0), 𝑋(1)), … , [𝑋(𝑛−2), 𝑋(𝑛−1)), [𝑋(𝑛−1), 𝑋(𝑛)] will further 

enable the creation of, 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑟) < ⋯ < 𝑋(𝑛−1) < 𝑋(𝑛) by merely 

collecting the least upper bounds of each partition. The definition of order statistics 

does not require that the 𝑋(𝑖)’s be independent or identically distributed. Much of 

the literatures (Reiss, 1989; Balakrishnan and Rao, 1998; Lieberman and Olkin, 

1991; David and Nadaraja, 1981) , on this issue, focus on the case in which they 

(i.e. the 𝑋(𝑖)’s) constitute a data from some joint/intrinsic probability function f 

(with the Independent and Identically Distributed (IID) assumption). The 

Probability Density Function (pdf) of 𝑋(𝑟) , the 𝑟𝑡ℎ order statistics is given by 

David and Nadaraja (1981) as; 

𝑓(𝑛)(𝑋(𝑟) = 𝑥) = 𝑟 (
𝑛
𝑟

) (𝐹(𝑥))
(𝑟−1)

(1 − 𝐹(𝑥))
(𝑛−𝑟)

𝑓(𝑥), −∞ < 𝑥 < ∞             (1) 
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Where; 𝑓(𝑥) is the joint/intrinsic probability function and 𝐹(𝑥) is the corresponding 

cumulative density function. The respective pdfs of the first and last order statistics 

are; 

𝑓(𝑛)(𝑋(1) = 𝑥) = 𝑛(1 − 𝐹(𝑥))
(𝑛−1)

𝑓(𝑥), −∞ < 𝑥 < ∞                                           (2) 

and 

𝑓(𝑛)(𝑋(𝑛) = 𝑥) = 𝑛(𝐹(𝑥))(𝑛−1)𝑓(𝑥), −∞ < 𝑥 < ∞                                                    (3) 

The cdfs of the first and last order statistics are easily derived integrating Equations 

(2) and (3) respectively to obtain Equations (4) and (5): 

𝐹(𝑛)(𝑋(1) = 𝑥) = 1 − (1 − 𝐹(𝑥))
(𝑛)

, −∞ < 𝑥 < ∞                                                    (4) 

and 

𝐹(𝑛)(𝑋(𝑛) = 𝑥) = (𝐹(𝑥))(𝑛), −∞ < 𝑥 < ∞                                                                    (5) 

In general, the cdf of the 𝑟𝑡ℎ order statistics is given as; 

𝐹(𝑛)(𝑋(𝑟) = 𝑥) = 𝑃(𝑋(𝑟) ≤ 𝑥)                                                                                           (6)

= 𝑃(at least r of 𝑋(1), 𝑋(2), … , 𝑋(𝑟), … , 𝑋(𝑛−1), 𝑋(𝑛) ≤ 𝑥)              (7)

= ∑ 𝑃

𝑛

𝑖=𝑟

(exackly i of 𝑋(1), 𝑋(2), … , 𝑋(𝑟), … , 𝑋(𝑛−1), 𝑋(𝑛) ≤ 𝑥)             (8)

= ∑ (
𝑛
𝑟

)

𝑛

𝑖=𝑟

(𝐹(𝑥))𝑖(1 − 𝐹(𝑥))(𝑛−𝑖), −∞ < 𝑥 < ∞.                          (9)

 

2.2 Derivation of the 𝒓𝒕𝒉 ordered observation’s distribution 

Karlin and Taylor (1975) suggested the Poisson on the issue of rate of radiation 

emission and thus exposure rate, but Sankaran (1970) and Ghitany et al., (2008), in 

turn, advocated strongly in favour of the Lindley distribution amongst the 

exponential family of distributions. Their submissions bother on; suitability for 

discretization (i.e. when Lindley is convoluted with the Poisson to form Poisson-

Lindley, a continuous distribution becomes discretized) and flexibility of properties 

(including those of shape). Armed with the order statistics models and the assumed 

intrinsic Lindley, the derivations of first, 𝑟𝑡ℎ and last order statistics goes thus; 

From Ghitany et al., (2008), the pdf, f(x) and cdf, F(x) of Lindley are; 

𝑓(𝑥) =
𝜆2

𝜆+1
(1 + 𝑥)𝑒−𝜆𝑥, 𝑥 > 0, 𝜆 > 0                                                                          (10) 
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and 

𝐹(𝑥) = 1 −
𝜆𝑥+𝜆+1

𝜆+1
𝑒−𝜆𝑥, 𝑥 > 0, 𝜆 > 0                                                                        (11) 

With mean, 𝜇 and its cdf, 𝐹(𝜇) given, respectively, as; 

𝜇 = 𝐸(𝑋𝑖) =
𝜆+2

𝜆(𝜆+1)
, 𝑖 = 1,2, . . . , 𝑛, 𝜆 > 0                                                                  (12) 

and 

𝐹(𝜇) = 1 −
𝜆2+3𝜆+3

(𝜆+1)2 𝑒
−

(𝜆+2)

(𝜆+1), 𝜆 > 0                                                                                (13) 

 

Now, using Equations (1) through (5) in conjunction with (9), (10) and (11) to 

derive the; first, 𝑟𝑡ℎ and last order statistics pdfs and cdfs respectively, we have; 

𝑓(𝑛)(𝑋(1) = 𝑥) =
𝑛𝜆2

(𝜆+1)𝑛 (𝜆𝑥 + 𝜆 + 1)(𝑛−1)(1 + 𝑥)𝑒−𝑛𝜆𝑥, 𝑥 > 0, 𝜆 > 0               (14) 

 

𝑓(𝑛)(𝑋(𝑟) = 𝑥)

= (
𝑛
𝑟

)
(1 + 𝑥)𝑟𝜆2𝑒−𝜆(𝑛−𝑟+1)𝑥

𝜆 + 1
(1 −

𝜆𝑥 + 𝜆 + 1

𝜆 + 1
𝑒−𝜆𝑟)

(𝑟−1)

(
𝜆𝑥 + 𝜆 + 1

𝜆 + 1
)

(𝑛−𝑟)

 

, 𝑥 > 0, 𝜆 > 0                                                                                                                        (15) 

 

𝑓(𝑛)(𝑋(𝑛) = 𝑥) =
𝑛𝜆2(1+𝑥)𝑒−𝜆𝑥

𝜆+1
(1 −

𝜆𝑥+𝜆+1

𝜆+1
𝑒−𝜆𝑥)

(𝑛−1)

, 𝑥 > 0, 𝜆 > 0                 (16) 

 

𝐹(𝑛)(𝑋(1) = 𝑥) = 1 − (
𝜆𝑥+𝜆+1

𝜆+1
𝑒−𝜆𝑥)

𝑛
, 𝑥 > 0, 𝜆 > 0                                                (17) 

 

𝐹(𝑛)(𝑋(𝑟) = 𝑥) = ∑ (
𝑛
𝑟

)𝑛
𝑖=𝑟 (1 −

𝜆𝑥+𝜆+1

𝜆+1
𝑒−𝜆𝑥)

𝑖
(

𝜆𝑥+𝜆+1

𝜆+1
𝑒−𝜆𝑥)

(𝑛−𝑖)

, 𝑥 > 0, 𝜆 >

0                                                                                                                                               (18) 

 

𝐹(𝑛)(𝑋(𝑛) = 𝑥) = (1 −
𝜆𝑥+𝜆+1

𝜆+1
𝑒−𝜆𝑥)

𝑛
, 𝑥 > 0, 𝜆 > 0                                               (19) 
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2.3 Computation of Quantiles 

To initiate the computation of a quantile, 𝑥∗, Equation (12) is first solved to obtain 

the value of "universal" 𝜆 > 0; 

𝜆 = 

√𝜇2 + 6𝜇 + 1 − (𝜇 − 1)

2𝜇
 

After which, the pdf or cdf of order statistics that is of interest will be respectively; 

integrated or evaluated in the interval, [0, 𝑥∗] (located at the corresponding values 

of the order statistics, 𝑋𝑖 , 𝑖 = 1,2, . . . , 𝑛 and universal 𝜆 > 0), equated to a 

corresponding fraction, 0 < 𝜌 < 1 and solved for 𝑥∗. 

2.4 Numerical Illustrations 

The following data (i.e. lblood and lurine) is an extract of the data that was obtained 

on Artisans working within Abeokuta metropolis, about a decade ago, the work was 

done by the former Department of Biochemistry, College of Natural Sciences, 

University of Agriculture, Abeokuta. Data was collected on the quantities of lead 

(Pb), Calcium (Ca), Sodium (Na), Potassium (K) etc. in the blood and urine samples 

from volunteers (the unit was in part-per-million (ppm)). The Artisans were in 

seven categories with respect to their trades, there were two Petrol Attendants 

categories as well. The population size is 118 (i.e. 𝑛 = 118) Dawodu et al., (2011). 

Example I 

The lead-in-blood (i.e. lblood) is used here, the summary and order statistics are as 

stated in tables 1 and 2 below; With respect to table 1 (it is noteworthy, the 

difference in measures of central tendencies, with or without the presence of outliers 

(i.e. median and mean respectively), because if the data size is as large as 118 and 

yet the two measures are not approximately equal then, the "idea" of using the 

normal distribution in place of Lindley should be "laid" to rest, at least, until when 

the data size is in "tune" of thousands), set 𝜇 = 32.14 to obtain 𝜆 as contained in 

Equation (20); 

𝜆 =
√(32.14)2+6(32.14)+1−(32.14−1)

2(32.14)
= 0.06045411 ≈ 0.06                                        (20) 

Now, assuming an "Apprentice" or a new entrant join the Artisans later, after 

working for some time his blood sample was taken and the quantity of lead (Pb) in 

his blood (say, 10.50 ppm) is brought forward, then the identification of his lead-in-
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blood distribution and "status" (i.e. quantile state) through the existing population 

data can be done as follows; 

 

In Equations (14) and (17), set 𝑛 = 1 to obtain Equation (10), which is his 

distribution. As for the quantile, Equation (11) will give that by evaluating it in the 

interval 0 < 𝑥 < 10.5 after setting 𝜆 = 0.06. That is; 

[𝐹(𝑥)]0
10.5 = [1 −

0.06𝑥+1.06

1.06
𝑒0.06𝑥]

0

10.5
= 1 − 0.8491324 ≈ 0.15                      (21) 

Consequently, his mean is also 32.14 ppm whilst his quantile state is 15th percentile. 

Example II 

If there were two readings of lead-in-blood for identification of distributions and 

quantile states, for the sake of precision, three or more readings should be avoided 

because it will require numerical integrations and multiple approximations. 

Equations (15) and (16) will be utilized for identification of the respective 

distributions whilst Equations (18) and (19) will be used for the respective quantile 

states. The smaller reading will be used with respect to Equations (15) and (18) 

whilst the second will be used with respect to Equations (16) and (19). Now, let the 

readings be 18.2 and 55.1, then, with respect to 18.2 ppm, its corresponding pdf is 

obtained by setting 𝑛 = 2, 𝑟 = 1 in Equation (15) to obtain Equation (22); 

𝑓(2)(𝑋(1) = 𝑥 = 18.2) =
2(1+𝑥)𝜆2𝑒−2𝜆𝑥

(𝜆+1)2
(𝜆𝑥 + 𝜆 + 1), 𝜆 > 0                                   (22) 

An attempt to estimate his mean in the long-run will involve putting 𝜆 = 0.06 into 

Equation (22) to obtain approximately 

𝑓(2)(𝑋(1) = 𝑥 = 18.2) ≈ (0.0004𝑥2 + 0.0072𝑥 + 0.007)𝑒(−0.12𝑥)                     (23) 

And integrating Equation (23) in 𝑥 > 0 will give his mean 

𝐸(𝑋1 = 18.2) = ∫ 𝑥
∞

0
𝑓(2)(𝑋(1) = 𝑥 = 18.2)𝑑𝑥 ≈ ∫ (0.0004𝑥3 + 0.0072𝑥2 +

∞

0

0.007𝑥) 𝑒(−0.12𝑥)𝑑𝑥 = 20.39                                                                                           (24) 

The estimation of second reading in the long-run is done using Equation (16) to 

obtain; 

𝐸(𝑋2 = 55.1) = ∫ 0.0068
∞

0
𝑥(1 + 𝑥)𝑒(−0.06𝑥)(1 − (0.0566𝑥 + 1)𝑒(−0.06𝑥))𝑑𝑥 ≈

44.93                                                                                                                                      (25) 

Actually, the readings do not play any role in the estimation of "long-run" means. 

That is, any single reading, 𝑥 < 32.14, is supposed to have 32.14 ppm as its long-
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run mean and any pair of readings 𝑥1 < 32.14,  𝑥2 > 32.14 are supposed to have 

long-run means, 20.39 and 44.93 respectively. However, readings do perform roles 

in the location of their quantile states. As for the first reading in the pair, its quantile 

state is obtained, using Equation (15); 

𝐹(2)(𝑋1 = 18.2) = [1 − (
(0.06𝑥+1.06)𝑒(−0.06𝑥)

1.06
)2]

0

18.2

≈ 0.536                                  (26)                                  

It is 53.6 percentile in its distribution. With respect to the second, Equation (19) is 

utilized to obtain; 

𝐹(2)(𝑋2 = 55.1) = [(1 −
(0.06𝑥+1.06)𝑒(−0.06𝑥)

1.06
)2]

0

55.1

≈ 0.72                                    (27)                                           

This is the 72th percentile in its distribution. 

3 Discussion and Conclusion 

Pollution matters should not be handled with levity, most especially avoidable ones. 

In the cases of Energy stations accidents at Chernobyl and Fukushima (Eisenbud 

and Gesell, 1997), little or nothing could have been done to avoid them, except that 

their aftermaths ought to be better managed. It may not be possible to totally 

eradicate environmental pollution because, at some locations, where one least 

expects them to be, presence of radioactive and carcinogenic elements like uranium 

and radon, for instance, could be accidentally felt (Rosenbaum, 1995; Dawodu and 

Mustapha, 2017). However, for avoidable ones, like exposure to radiation or 

hazardous elements, while at work, they could be well-managed, such that, their 

effects would have been usurped or reduced to the minimum, through the use of; 

awareness campaigns, safety gadgets and effective continuous monitoring. This 

work is part of the attempt to device an effective continuous monitoring technique 

to assist Artisans that are exposed to hazardous elements at their workshops. In 

section 5, "ties" may be involved with the ordered statistics. However, their 

presence would not distort the results because whenever they occur, the ties will 

possess the same long-run means and quantile states. In conclusion, the technique 

herein proposed, is effective (for instance, it did detected that the reading, 55.1 of 

the second example is past its central tendencies (i.e. mean and median) and goes to 

fix its quantile state, accurately as the 72th percentile and paves the way for works 

involving Bayesian approaches whose intrinsic simulation method;  Gibbs 

sampling, Metropolis hasting, Markov Chain Monte Carlo etc.), can be used to 

evaluate the numerous integrations and approximations whenever three or more 
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sample readings are taken, further Equation (13) even supplies the cdf of 𝜇 freely to 

whoever intends to go Bayesian. 

 

3.1 Preference of this Order Statistics Technique over Existing Standard 

Methods 

The "susceptibility to toxicity" of the Artisans’ blood can only be obtained after 

they have been exposed to the elements of their trades for a period (preferably in 

years). This statistic is not usually exhibited but is of paramount importance in 

occupational epidemiology. Prior to the publishing of Dawodu et al., (2011), what 

the epidemiologist does while reporting occupational surveys (Eisenbud and Gesell, 

1997; Steenland, 1993) amounts to: 

1. Quantify the exposure externally or internally through the blood and/or urine 

of Volunteers (probably in cohorts). 

2. Monitor the existence of Volunteers through their survival analyses. For 

example, identifying their number when the study began, keeping the records 

of those who died or suffer ailments traceable to the exposure and using that to 

calculate the statistic. 

3. Giving ratios and percentages of survivors as the study continues as measure 

of risk and/or odds ratio after using the relevant logistic formula. 

In Dawodu et al., (2011), the blood and/or urine of individual Artisan was examined 

with respect to the presence of some element (e.g. lead(Pb)). The table of 

correlation coefficients for quantified exposures with respect to the elements under 

study was given. The descriptive statistics of the exposure elements were given and 

Quality Control Methodology (QCM) was used to derive the model for predicting 

the statistic. QCM assumes the accumulation of individual element in the 

blood/urine of an Artisan is a process that will go out of control when the Artisan is 

susceptible. In the present technique, individual Artisans can now be statistically 

examined through their unique distributions. This enables the researcher to know 

their individual Cumulative Density Functions (cdf) and quantiles. This will enable 

the researcher to know (provided the Artisan lives long enough), when (in years, 

after joining a trade) he will be mildly (≤ 25%), averagely (≤ 50%) and highly (>

50%) susceptible. Finally, the determination of individual quantiles connoting the 

time in years Artisans ought to retire from the work (Artisan’s) was not available 

through known techniques before now. 
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